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Apolipoprotein C-III (apoC-III) is a protein of 79 amino
acids that is synthesized in the liver and to a lesser degree
in the intestine (1). In the circulation, apoC-III is a con-
stituent of both apoB- and apoA-I-containing lipoproteins.
It is not evenly distributed between these lipoproteins
however, with the majority of apoC-III found in the HDL
fraction in normolipidemic individuals and on triglyceride-
rich lipoproteins in patients with elevated levels of plasma
triglyceride (2, 3). Furthermore, some VLDLs, intermedi-
ate density lipoproteins (IDLs) and LDLs contain many
molecules of apoC-III, whereas others contain none (4).
Semi-quantitative analysis suggests that less than half of
apoA-I-containing lipoproteins in plasma (i.e., HDL) con-
tain apoC-II (5).

ApoCHII plays a pivotal role in regulating the plasma
metabolism of VLDL, IDL, and LDL, primarily by inhibit-
ing receptor-mediated uptake of these lipoproteins by the
liver (6-8). VLDL containing apoC-III are channeled
down the lipolytic cascade to LDL, particularly to denser
LDL that have a slower clearance rate from plasma (9).
ApoC-III also enhances the hepatic assembly and secretion
of VLDL (10), and overproduction of apoC-III and of
apoB lipoproteins that contain apoC-III is a common fea-
ture of patients with hypertriglyceridemia (8, 9, 11). Thus,
apoC-IIl is intricately involved in establishing hypertriglyc-
eridemia and its associated dense LDL phenotype. Much
less is known, however, about the function of apoC-III
when it is a component of HDL. ApoC-III has been shown
to inhibit hepatic lipase (12) and interact with receptors
such as scavenger receptor class B type I (13) and ABCA1
(14), thus having the potential to affect the function or
metabolism of HDL.

ApoC-III can also stimulate several processes involved in
atherogenesis and vascular inflammation. ApoC-III stimu-
lates blood-born monocytes and endothelial cells to pro-
duce cytokines such as tumor necrosis factor-a and
adhesion molecules, and it activates insulin-resistance
pathways in endothelial cells causing endothelial dysfunc-
tion (15, 16). Interaction of apoC-III with TLR-2 at the cell
surface acts as an initiating event in this function. ApoC-III
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in LDL binds to vascular proteoglycans that may lead to
LDL retention in the arterial wall (17). ApoC-III also stim-
ulates adipocytes to produce cytokines and suppresses
their production of adiponectin (18). These actions, con-
verting adipocytes into a proinflammatory phenotype, may
act indirectly to promote the development of atheroscle-
rosis. More direct evidence for the atherogenicity associ-
ated with apoC-III comes from transgenic animal studies
that have found that ldlr’" mice overexpressing human
apoC-III develop enhanced atherosclerotic lesions on a
Western diet (19). Furthermore, apoC-III and the VLDL
and LDL that contain it are strong independent predic-
tors of cardiovascular events and of progression of coro-
nary atherosclerosis (20, 21). In summary, evidence from
several sources link apoC-III with atherosclerosis, provid-
ing a strong rationale to better understand factors affect-
ing the plasma metabolism of apoC-III.

In the April issue of the Journal of Lipid Research, Ooi and
colleagues (22) evaluated the metabolism of apoC-III in
patients with chronic renal failure, a condition associated
with a high incidence of cardiovascular disease. The prin-
cipal finding was a low fractional catabolic rate (FCR) for
apoC-II in VLDL of renal patients compared with con-
trols. The FCR of VLDL apoC-III was strongly correlated
with the FCR of VLDL apoB. These results provide addi-
tional evidence for an effect of apoC-III on clearance of
triglyceride-rich lipoproteins and for the involvement of
apoC-IIl in the dyslipidemia of patients with chronic renal
impairment.

Ooi and colleagues, in this and previous research arti-
cles (22-24), have used their apoC-1II kinetic data to make
general conclusions about the plasma metabolism of apoC-
III. They found that their tracer enrichment-time curves
for apoC-III in VLDL and in HDL were similar. Conse-
quently, the FCR for VLDL and HDL apoC-III were the
same. From this observation, they concluded that apoC-I1I
equilibrates rapidly and completely between these lipopro-

'See referenced article in the April issue: J. Lipid Res. 2011, 52: 794—
800 and companion commentary in this issue: J. Lipid Res. 2011,
52:1071-1072.
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teins (24). Because VLDL is cleared much more rapidly from
plasma than HDL, these results and conclusions suggest
that apoC-III transfers or exchanges between apoB- and
apoA-I-containing lipoproteins (and perhaps also between
different apoB-containing subspecies), but avoids being
catabolized when these lipoproteins are cleared from the
circulation. This scenario would suggest that apoC-III con-
tinually “jumps off” lipoproteins before they are taken up
by cells. In addition, for a one-pool model of apoC-III ki-
netics to adequately explain plasma apoC-III metabolism,
apoC-III must be cleared as free apoC-III or as a single li-
poprotein type (i.e., “terminally catabolized triglyceride-
rich lipoproteins”). Because free apoC-III is not found in
human plasma (5, 25), and we find it hard to conceptual-
ize how apoC-III escapes tissue uptake during the normal
course of VLDL and HDL clearance, we have to question
this oversimplified view of apoC-III metabolism.

We view the one-pool model for plasma apoC-III me-
tabolism as only one of several possible interpretations of
apoC-II tracer enrichment-time curves. Ooi and col-
leagues have not measured the movement of apoC-III be-
tween lipoproteins, so their interpretation that apoC-III
rapidly and completely exchanges between lipoproteins is
by inference only and not by direct measurement. One
possibility is that enrichment curves could reflect an aver-
age of several distinctly different apoC-III pools within
VLDL or HDL (which is incidentally the case for VLDL
apoB and for HDL apoA-I when it is isolated and analyzed
as one fraction). The pattern of apoC-II distribution
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within triglyceride-rich lipoproteins certainly does not
suggest a random equilibration of apoC-III. ApoC-III-im-
munoaffinity chromatography separation of VLDL has
demonstrated that VLDL containing apoC-III have as
many as 100 apoC-III molecules per particle, yet a signifi-
cant portion of VLDL do not contain apoC-III at all (4,
26).

Another problem with the one-pool concept for plasma
apoC-III metabolism is that it fails to explain the asymmet-
rical presence of apoC-III among triglyceride-rich lipopro-
teins and HDL. ApoCII is present across the entire
spectrum of differently-sized plasma lipoproteins from
large VLDL to small HDL. However, apoC-III is present
on only 30-70% of VLDL, a smaller percentage of IDL,
5-15% of LDL, and a minority of HDL particles. The
actual apoC-III distribution pattern, as demonstrated in
Fig. 1, suggests that apoC-III transfer between various lipo-
proteins is a regulated process and requires other factors.
If apoC-III is freely and rapidly exchangeable in a single
pool, then exchange would be restricted to apoC-III-con-
taining lipoprotein subtypes. This would require an un-
known property of apoC-IlI-containing lipoproteins that
permitted apoC-III to transfer freely among them and not
to nonapoC-III containing lipoproteins.

Therefore, an unanswered question that needs to be re-
solved is the extent to which apoC-III exchanges between
VLDL and HDL. Although some studies have demon-
strated exchange and equilibration of apoC-III between
VLDL and HDL (24, 27), others have found nonexchange-
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Fig. 1. Comparison between the actual lipoprotein distribution of apoC-III and the distribution inferred
from the one-pool concept of plasma apoC-III metabolism. There are on average ~20-50 apoC-III molecules
on each VLDL particle. About 50% of VLDL contain apoC-III (CIII+), and the other half of VLDL do not con-
tain apoC-II at all (CIII-). The apoC-II distribution pattern within VLDL has an inverse bell shape (left panel).
On the other hand, the one-pool concept of plasma apoC-III metabolism suggests that apoC-III exchanges freely
and randomly within VLDL and HDL and also between VLDL and HDL. In this scenario, the vast majority of
VLDL and HDL would contain some apoC-III molecules and would have a normal distribution pattern (right
panel). There would be few VLDL or HDL containing large numbers of apoC-III molecules and one would

be unlikely to find lipoproteins without apoC-III.
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able pools of apoC-III that do not completely equilibrate
between VLDL and HDL (11, 28). Based on in vitro ex-
periments, Boyle et al. (29) found two kinetic pools of
apoC-II that transferred between VLDL and HDL at dif-
ferent speeds. ApoC-III in the fast pool rapidly transferred
from donor to recipient lipoproteins in a matter of min-
utes, whereas apoC-III in the slow pool followed a mono-
exponential rate of exchange with a t;,9 of 3 h. The
distribution of apoC-III between fast and slow pools was
variable but apparently depended on the size of the donor
particles. These results suggest that the two kinetically dis-
tinct pools may be related to conformational changes in
individual apoC-III molecules on the lipoprotein surface.
In a separate study, labeled apoC-III disappearance from
plasma was found to follow tri-exponential kinetics, and
differences in plasma and urine radioactivity curves sug-
gested the presence of kinetically distinct pools of apoC-I11
(30). These findings for apoC-III are analogous to the
properties of apoE, which is a fixed and exchangeable
component within VLDL of various sizes (31).

Our tracer studies of apoB metabolism have shown that
apoC-lIl-containing VLDL and IDL are converted to
VLDL, IDL, and LDL without apoC-III (8, 9). More than
half of apoC-lIl-containing VLDL and IDL follow this
pathway, losing their triglyceride content together with
apoC-IlL. They are thus transformed into slowly turning
over lipoproteins that do not contain apoC-III. Partial loss
of apoC-III also happens to triglyceride-rich lipoproteins
with apoC-III as evidenced by their diminishing apoC-III
content as they become smaller (26). It remains to be stud-
ied whether apoC-III molecules released from VLDL and
IDL are relocated to other apoB lipoproteins or HDL or
are cleared from circulation directly. Similarly, it is not en-
tirely clear what processes regulate the transfer of apoC-III
from HDL to VLDL. Although apoC-III can readily trans-
fer from HDL to VLDL or chylomicron-sized lipid emul-
sions (24, 30), in our tracer studies, we have not found
evidence in vivo for acquisition of apoC-II by circulating
VLDL that do not yet have apoC-III. It is possible that if
indeed apoC-III does move from HDL to VLDL in signifi-
cant amounts, the preferred recipient VLDL are the large
particles that already possess considerable amounts of
apoC-IIIL. One additional reason to question the simplicity
of a one-pool model of plasma apoC-III metabolism is that
apoC-II exists as three isoforms, i.e., apoC-III,, apoC-III;
and apoC-Il,, corresponding to 0-2 sialic acid molecules
on the protein. The isoform with most sialic acid, apoC-
III,, tends to have a higher FCR compared with monosialy-
lated apoC-IIl;, and apoC-Ill,, the less-predominant
isoform, has a significantly slower FCR and lower produc-
tion rates compared with the other two isoforms (32).
These data suggest heterogeneity among apoC-III iso-
forms, regarding both secretion and clearance, which
should be taken into consideration when dealing with dis-
ease conditions that directly affect apoC-III sialyation, in-
cluding chronic renal failure (33).

Current modeling of apoC-III kinetic data has assumed
that apoC-1I is secreted on both VLDL and HDL, and that
the distribution of secretion is proportional to their re-

spective pool sizes. However, it is not clear if this assumption
is correct. Recent experiments with hepatocytes express-
ing apoC-III show that the vast majority of apoC-II is
found on HDL instead of VLDL in the media of cultured
cells (10). It is unclear whether apoC-II is secreted to-
gether with HDL or if HDL acquires apoC-III after secre-
tion. On the other hand, the same group reported that
apoC-III seemed to play an important role in packaging
lipids onto VLDL precursors (10, 34). Indeed, the major-
ity of apoC-III in the microsomal lumen was found associ-
ated with IDL-sized lipid droplets, which later fused with
VLDL precursors to form VLDL. Therefore, it is possible
that apoC-III is secreted as an integral component of lipo-
proteins and is not a result of random acquisition by ac-
ceptor particles. Once again, apoC-III appears to have a
specific and not simply a random role in regulating VLDL
production by the liver.

In conclusion, it is our opinion that: 1) hepatic apoC-III
production (i.e., synthesis and secretion) plays an impor-
tant role in determining the size or number of triglycer-
ide-rich VLDL secreted by the liver; 2) in the blood,
different lipoproteins (whether apoB- or apoA-I-contain-
ing) have different numbers of apoC-III molecules, which
may be determined by the structure or composition of the
lipoproteins themselves; and 3) irrespective of whether all
apoC-III is exchangeable or not, it significantly affects the
metabolism of the particle on which it resides, and in so
doing, plays a central role in determining the concentra-
tion in the circulation of potentially atherogenic VLDL,
IDL, and small dense LDL.EA
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